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Motivation

Brickwall model for (AdS) BH



[ hep- th/9802109, hep- th/9802150 |

GKP-Witten Formula

(Fundamental formula of AdS/CFT)

LoFT = Lgravity

N

(d-dim field theory) (d+1 dim gravity theory)



[ hep- th/9802109, hep- th/9802150 |

GKP-Witten Formula

(Fundamental formula of AdS/CFT)

<ej‘d)0(9> — esgravity [d)lz:O:d)O]
QFT

/7

Source Operator



[ hep- th/9802109, hep- th/9802150 |

GKP-Witten Formula

(Fundamental formula of AdS/CFT)

<ej‘d)0(9> — esgravity [d)lz:O:d)O]
QFT

\

Classical

on-shell action



[ hep- th/9802109, hep- th/9802150 |

GKP-Witten Formula

(Fundamental formula of AdS/CFT)

<€f¢oo> — esgravity [ Plz—0 =°]
QFT

/

Near AdS Boundary: &(x,z) = d°(x) + &' (x) z + O(z?)

Bulk

Source Response
Fields

z — 0



Power of GPKW Formula

(N-point functions)

5(n) Sren [¢]
o gravity
001 - O] = 5a0a) .. 360t lavmo

Linear
response theory Tard
(n=2) Computation

Transport for strongly interacting field theory



Power of GPKW Formula

(N-point functions)

5(n) Sren [¢]
o gravity
001 - O] = 5a0a) .. 360t lavmo

Linear
response theory Hard Easy
(n=2) Computation Computation

Transport for strongly interacting field theory



Shear
Viscosity = EX1: Quark-Gluon Plasma

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team

Viscosity in Strongly Interacting Quantum Field
Theories from Black Hole Physics

P. K. Kovtun, D. T. Son, and A. O. Starinets
Phys. Rev. Lett. 94, 111601 — Published 22 March 2005

_aat

- Viscosity of Quark-Gluon Plasma (Insights into the early universe / heavy-ion collisions)

A
Perturbative Theory: S = > 1 (small t Hooft couplin )
50F ../
Graity Theory: /s = 1/(4m) /s | oS,
/ks] rof o Tteen, eeett”
Experiment: 77/3 ~ (.19 o5k \“\\3:\\ @ & ultracold Fermi gas
® ¢ S
. b
0.2f /,@——@""@'
quark gluon plasma ~. lL/ -
otr [ R %E@ 1/(4r)
| holographic bounds |



Electric

Conductivity EX 2: Superconductors

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team

Building a Holographic Superconductor

Sean A. Hartnoll, Christopher P. Herzog, and Gary T. Horowitz
Phys. Rev. Lett. 101, 031601 — Published 14 July 2008

- New perspective of high-Tc superconductivity

- Spontaneous condensation, infinite conductivities, ---

0(w)=ao+(£—|—5(w))% v oo

- Energy gap

BCS Theory: wgy/T. =~ 3.5 (Weakly-coupled BCS Theory)

Im[a]

Gravity Theory: Wy /Tc ~ 8 (Holographic Superconductors)

Experiment: w./T,. ~ 7.940.5 (High-Tc Cuprates)
Nature 447, 569-572 (2007)




AdS boundary conditions

Near AdS Boundary: &(x,z) = d°(x) + &' (x) z + O(z?)

Bulk

Source Response
Fields

z — 0
fixing

Dirichlet boundary condition

(Standard quantization)



AdS boundary conditions

Near AdS Boundary: &(x,z) = d°(x) + &' (x) z + O(z?)

Bulk

Source Response
Fields

z — 0

fixing
[ Witten, Marolf, Ross, ... ]

Mixed boundary condition

Dirichlet / Neumann / Robin



AdS boundary conditions

(Power of Mixed Boundary conditions)

electromagnetism

plasmons

plasmas

superconductors

Dynamical gauge fields

Electromagnetic interactions

Coulomb interactions,

Applied AdS/CFT to
Realistic System



EFTs
vs. Poles Examples

(Collective Excitations = Quasi-Normal Modes)

Magneto-hydrodynamics Anderson-Higgs mechanism (GL theory)
Vs = S SO B
0.2 \ 4.87 R

“Plasma frequency”’ Relw] |, ¢ B B e
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[ Many people ]
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Horizon Conditions

Y 4 - i\-‘

® 9

N

Effect of “relaxed” horizon conditions in AdS/CFT?

Any interesting physics in black holes?

Implications on boundary physics?



Horizon Conditions

This is THE black hole

Nothing comes out

from the horizon ---

physically natural ---

retarded 2-pt {fn -

blabla ---

Incoming

boundary condition



Horizon Conditions

How about
the “stretched” horizon, then?



[ Nucl. Phys. B 256 (1985) 727,
Phys. Rev. D 48 (1993) 3743 ]

Brickwall model

Stretched

At a technical level, it’s the brickwall model from 't Hooft

A Dirichlet wall is placed ad hoc outside the event horizon



[ Nucl. Phys. B 256 (1985) 727,
Phys. Rev. D 48 (1993) 3743 ]

Brickwall model

Simple yet effective model to capture

some aspects of quantum black holes

- Quantization of the probe scalar fields: Partition function, free energy

(quantized energy spectrum, semi-classical calculations)

[ Nucl. Phys. B 256 (1985) 727 ]

- Fine-grained information: reproducing the entropy as a one-loop effect

(up to a numerical pre-factor)

- Beyond flat spacetime: AdS geometry [NuclPhys. 8895 (2015) 1]

(Including nice reviews of t” Hooft’s calculations)



Brickwall model in AdS BH

- Quantization of the probe scalar fields: energy spectrum “statistics”

Synthetic fuzzballs: a linear ramp from black hole normal modes

Suman Das (Saha Inst.), Chethan Krishnan (Bangalore, Indian Inst. Sci.), A. Preetham Kumar (Bangalore, Indian Inst. Sci.),
Arnab Kundu (Saha Inst.) (Aug 31, 2022)

Published in: JHEP 01 (2023) 153 - e-Print: 2208.14744 [hep-th]

Fuzzballs and random matrices

Suman Das (Saha Inst.), Sumit K. Garg (Manipal U.), Chethan Krishnan (Bangalore, Indian Inst. Sci.), Arnab Kundu (Saha Inst.)
(Jan 27, 2023)

Published in: JHEP 10 (2023) 031 - e-Print: 2301.11780 [hep-th]

Brickwall in rotating BTZ: a dip-ramp-plateau story
Suman Das (HBNI, Mumbai), Arnab Kundu (HBNI, Mumbai and CERN) (Oct 10, 2023)
Published in: JHEP 02 (2024) 049 - e-Print: 2310.06438 [hep-th]




Brickwall model in AdS BH

- Quantization of the probe scalar fields: energy spectrum “statistics”

When a stretched horizon is close to the event horizon

energy spectrum can exhibit quantum chaos sighature

consistent with random matrix theory

1. Level spacing distribution of Gaussian Unitary Ensemble (GUE)

2. Dip-Ramp-Plateau structure with a linear lamp in the SFF

(Spectral Form Factor)



Brickwall model in AdS BH

robescalarFied || GUE | GOE | GSE
v

1. Random matrix theory across various ensembles

Level spacing distribution

Our
Work 2. Modern tool of quantum chaos: Krylov complexity

[ 2412.12301 ] 3. Dynamics of probe Fermion field



® OUTLINE

1 | Preliminaries: chaos diagnostics

: level spacing distribution, SFF, Krylov complexity

2 | Normal modes in Brickwall model

: energy spectrum from scalar/fermion fields

3 | Results

: chaotic teatures of black holes



Preliminaries: chaos diagnostics

: level spacing distribution, SFF, Krylov complexity



[ J. Math. Phys. 3 (1962) ]
[ Phys. Rev. Lett. 52 (1984) ]

Random Matrix Theory
- A pivotal role in identifying universal features of quantum chaotic systems

- Three main classes in RMT (collections of RM with specific properties)
(different Gaussian measures)

Gaussian Gaussian Gaussian

Unitary Ensemble (GUE) | Orthogonal Ensemble (GOE) | Symplectic Ensemble (GSE)

Hermitian matrices Real symmetric matrices Hermitian quaternionic matrices
Invariant under U. conjugation Invariant under O. conjugation | Invariant under S. conjugation
Systems Systems Systems

lacking time-reversal symm. with time-reversal symm. with time-reversal symm.

(no rotational symm.)



[ J. Math. Phys. 3 (1962) ]
[ Phys. Rev. Lett. 52 (1984) ]

Bohigas-Giannoni-Schmit (BGS) Conjeture

- The central conjecture in the study of quantum chaos

. postulates that the fine structure of the energy spectrum of a quantum

chaotic Hamiltonian can be approximated by the statistical behavior of RMT

Level Statistics H GUE

77 ' ' HGoE

(Some chaotic Hamiltonian)

Hgse



[ J. Math. Phys. 3 (1962) ]
[ Phys. Rev. Lett. 52 (1984) ]

Bohigas-Giannoni-Schmit (BGS) Conjeture

- Level spacing distribution (the probability of finding two adjacent energy levels)

218

3673

T g2 32 2 —282

™ 4 64 2
pGOEZESQ 47, pGUE:ﬁS € ™ Pasg =

8697r8

. level repulsion signifies that, in chaotic systems, energy levels tend to avoid clustering

xxxxxxxxxxxxxxxxxxxxxxx

12 — OE
0.8; GUE
P(s) 0.6 GOE
0.4
0.2!
0.0f

xxxxxxxxxxxxxxxxxxxxxxx




[ J. Math. Phys. 3 (1962) ]
[ Phys. Rev. Lett. 52 (1984) ]

Bohigas-Giannoni-Schmit (BGS) Conjeture

- Level spacing distribution (the probability of finding two adjacent energy levels)

218

3673

T g2 32 2 _is2

™ 4 64 2
pGOEZESQ 47, pGUE:ﬁs € ™ Pasg =

869#8

. level repulsion signifies that, in chaotic systems, energy levels tend to avoid clustering

2 N 12 ]
10l — OG5t 10 Integrable systems
0.8 GUE : 0.8 s
[ ] I pPoisson — €

p(s) 0.6 GOE ‘: p(s) 0.6
0.4} ] 0.4}
0.2} | 0.2}
o.of” 0 S 00f




[ J. Math. Phys. 3 (1962) ]
[ Phys. Rev. Lett. 52 (1984) ]

Bohigas-Giannoni-Schmit (BGS) Conjeture

- Spectral Form Factor (time-dependent characteristics of the spectrum)

Z(8,¢)°

SFF =

Z(8,0)[>

inverse temperature

/

Z(8,t) = Tr [e—(f’—“m }

: the hall mark of chaotic systems is the emergence of a “linear” ramp at late times.

g,
+-
ot

()

10°

10

107

1

10—

104

1077

107°

107

SYK model

Slope

Plateau

109 10* 107 10° 104 10° 10°

[ JHEP 05 (2017) 118



Krylov Complexity

[ Phys. Rev. D 106 (2022) 044007 ]

- Krylov complexity of states (new tool for probing quantum chaos)

Time-evolved state

/ /
C(t) =" nlyn(t) P(t) =Y hn(t)|Kp)

Krylov basis

. It quantified the spread of a quantum state over the Krylov basis of given Hamiltonian
: A reference quantum state |¢/(0)) “spreads” and becomes complex Hugo's Talk

: A complementary perspective to (time-dep) spectral measures (e.g., spectral form factor)



Krylov Complexity

[ Phys. Rev. D 106 (2022) 044007 ]

- Krylov complexity of states (new tool for probing quantum chaos)

1 __BEn B -
|¢(0)>=¢Z(57t20);6 2 n)®|n),  Hln) = Eyln).

: For thermofield double states, Krylov complexity reveals a ramp-“peak”-slope-plateau



Krylov Complexity

[ Phys. Rev. D 106 (2022) 044007 ]

- Krylov complexity of states (new tool for probing quantum chaos)

1 __BEn B -
|¢(0)>=\/Z(5’t20);6 2 n)®|n),  Hln) = Eyln).

: For thermofield double states, Krylov complexity reveals a ramp-“peak”-slope-plateau

| <« GSE :

"9 GUE Peak is proposed
| GOE e . . :

10| < as indicative of chaotic dynamics

Tk | \

0.5 (Tested with diverse guantum mechanical models)
j Integrable systems

00 (Standard normal distribution) (RMT, SYK, Billiards, Spin-chain, etc...)

0 2 4 6 8 10 [ JHEP 05 (2024) 337, JHEP 08 (2023) 176, JHEP 08 (2024) 241, ...]



[ JHEP 08 (2023) 176 ]

Spectral Form Factor Krylov Complexny
T A 1: | peak
0.100§  slope I - ~ saturatlon
W 0.010} I : '/
L i | |\, plateau | =, [ " linear
= 0-0015 \ ’{ M il < 0.010: e
Al 4 | \ ll i | X pd
10 i et TAMP . /
1075 © | | W‘”””dlp ] 0.001;
. E : - / quadratic
1 10 100 1000 1 10 100 1000
t t

. Four-stage behavior of Krylov complexity is analogous to the one from SFF

: For the maximally-entangled state, e.g., the TFD with 5 =0 System size of H

1 - 1 d—1
L O e T R



Quick Summary

All we need to evaluate chaos diagnostics is

the energy spectrum of the system

1. Level spacing distribution

wwwwwwwwwwwwwwwwwwwwwww

3. Krylov complexity

0.8; GUE 10 \%c oo
p(s) 0.6¢ GOE f o

0.4f 5 05|

0.2} |

Ooi 0.0”

2. Spectral Form Factor: linear-ramp



Normal modes in Brickwall model

: energy spectrum from scalar/fermion fields



BTZ Black Hole

- Coordinate system

2 2
> 2 2 dz - dy
ds” = 1—zdt 42(1-2)2  1-2z2°

. It simplifies the computations of normal modes in Brickwall model

(it does not change any physics, of course)

: In this coordinate,
AdS boundary: z — 1

Event horizon: 2z — (




(B —mg)® =0

Probe Scalar Field

d — ¢(z) e—z’wteiJgo
- Klein-Gordon Equation
(2 ¢'(z)  J?2%+w? — 2(J? + w? + m2) 5(2) = 0
2 422(1 — 2)2 '
. “J" is assumed as the quantum number in the Brickwall model
(interpreted as the angular quantum number) [ Nucl. Phys. B 256 (1985) 727 ]

: “w" is the normal mode, interpreted as energy eigenvalues, as w(n, J)

\

: For simplicity, let us consider the massless case hereafter quantum numbers



Step 1
Probe Scalar Field

- Full solution

i(J —w) —i(J+w) -
> ; > ;1 zw,z)

+ CQ Ziw 2F1 (—Z(JZ_ w); Z(J;_w) ; 1+ iw;z) ]

with two undetermined coefficients (C_i) and hypergeometric functions (F)



Step 2
Probe Scalar Field

This whole this is

- AdS boundary expansion ( z — 1) ~ the leading term

e™ T'[1 — iw]

Lo I'[1 4+ iw]

Poaryl2) = C P pr 14 )]

2

i(J—w) | 1(Jtw
D1+ 05 1 - )
we impose the normalizability, @¢bdry(1) =0, leading to

D1— )|y WP — gy

Cg — —Cl e™

2 2

IS P P

setting the relationship between two undetermined coefficients (C i)



Step 3
Probe Scalar Field

- Event horizon expansion ( z — 0)

bror(2) = Ci (P1 25 4+ Q z?“’)

with
{1 — ] {14 W 1 — )
p=1, @Q=-—t——3—"1 """ -,
P_1+Z(*’;w>_r_1—z(JT+w)_rj1+z'wj

1) This is the combination of incoming and outgoing conditions

2) The functional form of P_1 and Q_1 is complicated in r-coordinate



¢hor(z) ~ Cl (Pl Z_%w +Q1 Z%>

Step 4

Probe Scalar Field

- B.C at the stretched horizon near the event horizon (z = 2y)

1w ()

A

Dirichlet boundary condition

with any constant value



¢hor(z) ~ Cl (Pl Z_%w +Q1 Z%>

Step 4
Probe Scalar Field

- B.C at the stretched horizon near the event horizon (z = 2y)

1w ()

A

1. A phase redefinition does not change any physics on normal modes

)\J — )\J/w

Dirichlet boundary condition
2. Fixing the freedom makes the calculations simpler

C1Q1 =1

with any constant value

[ JHEP 01 (2023) 153, JHEP 10 (2023) 231, JHEP 02 (2024) 049, ... ]



¢hor(z) ~ Cl (Pl Z_%w +Q1 Z%>

Probe Scalar Field

Step 4

- B.C at the stretched horizon near the event horizon (z = 2y)

1w ()

3. In general, P and Q are the complex numbers (given by equations)

Py = |Py|e"=, Q1 =|Q1le”? .



¢hor(z) ~ Cl (Pl Z_%w +Q1 Z%>

Step 4
Probe Scalar Field

- B.C at the stretched horizon near the event horizon (z = 2y)

w

3. In general, P and Q are the complex numbers (given by equations)

Py = |Py|e"=, Q1 =|Q1le”? .

Quantization Condition
Imaginary part:  cos(0, — 03) = cos(2Ajw), sin(fy, —03) = sin(2A; w)

— () are functions of (w, J) given by the equation of motion



¢hor(z) ~ Cl (Pl Z_%w +Q1 Z%>

Probe Scalar Field

Step 4

- B.C at the stretched horizon near the event horizon (z = 2y)

LW

3. In general, P and Q are the complex numbers (given by equations)

Py = |Py|e"=, Q1 =|Q1le”? .

Quantization Condition
Imaginary part:  cos(0, — 03) = cos(2Ajw), sin(fy, —03) = sin(2A; w)

—— () are functions of (w,.J) given by the equation of motion free parameter

v

— This phase equation provides normal modes w(n , J) with an integer n for given )\J



1w

Pror(2) = C1 (P1 25+ Q z?“’)

Step 4

Probe Scalar Field 9 — Arg 4]

- B.C at the stretched horizon near the event horizon (z = 2y)

1w ()

6

Ly = 2cos()\Jw—§)

4. The free parameter is heuristically comparable to the position of the stretched horizon

AJ [ JHEP 01 (2023) 153, JHEP 10 (2023) 231, JHEP 02 (2024) 049, ... ]

— Letusmodel A asdrawn from a Gaussian distribution with standard deviation O

!

1 free parameter

— In the zero-variance limit: (x\]) = 5 logzg — —00

py = 2 as the stretched horizon approaches

to the event horizon zg — 0



bnor(2) = C (Pl 5 + Q4 z%)

Step 4
Probe Scalar Field 9 = Arg ]

- B.C at the stretched horizon near the event horizon (z = zy)

LW

0

Ly = 2COS()\JCU—§)

Long story short, from the phase equation, we determine the normal modes with

1
(Ag) = 9 log 2o O, control
parameter
the position of the stretched horizon the standard deviation / o0
— ()\J> — —104 oj = 0y, 0‘0/J, or 00/\/j

[ JHEP 01 (2023) 153, JHEP 10 (2023) 231, JHEP 02 (2024) 049, ... ]



[ Fortsch. Phys. 57 (2009) ]

Probe Fermion Field

- Dirac Equation

(T Dy — my) ¥ =0

_ ¢+ (p) e—iwtez’Jgo
- (w—(p)>

. It can be solved analytically in our z-coordinate

bal2) — \/(lj:\/Z)\/l—z

(x1(2) £ x2(2))

Nz
1w iw 1 io(J —w 1 (J4+w) 1 |
x1(z) =(z—1) 1,7 [Clz o Fy (Z_ ( 5 );—Z-I— ( 5 );§+zw;z>
, . 1 i(J-w) 3 i(JH+w) 3 .
+1Cqe™\z o F} (4—|— 5 1 5 5 ZW,Z)]:
2 1/2 ./ - —1/2
x2(z) = 271 w) [Z(z—l)z x1(2) +i(Jz +w) 2 X1(Z)]-



Probe Fermion Field

Yhor(2) = C1 (Pl 25+ O z%)

- Near horizon expansion

b _ cosh(mw) — i sinh(Jm) I’ [% —i(J + w)] I' [% +i(J — W)} I [% + iw] —1
P T 22w L3 —iw] =1

which is different from the scalar field one

- Quantization condition

cos(0n — 03) = cos(2Ajw), sin(f, —03) = sin(2A; w)



Results

: Probe Scalar Field



w

1.5718 x 104/
1.5715x1074|
1.5712x107%}

1.5709x 107~

Normal Modes

oo = 0.025

w

100 200 300 400

- It is n=0 mode, similar to higher levels

- ltis symmetricinJ <0

- Erratic behavior as we increase the standard deviation

1.5718x10~%|

1.5715%x10~*

15712x107 i

1.5709x 1074}

(Aj) = —10*

. Jeen .

100

o0 (0~2)
———
. .
RESRATR I ey
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Level Spacing Distribution

o [ S T |
1.0/ ; 1.0 1.0
08 0.8 /\ ] 0.8
p(s) 0.6; 1 P(s) 0.6} \ 1 P(s) 0.6}
0.4 - 0.4F ] 0.4
0.2 %\ ] 0.2 o 0.2
0o m AMNSNNRNRNRNEN. .. . 0.0 AT r.' TP T 0.0!
0 1 2 3 4 0 1 2 3 4
(a) oo = 0.018 (GSE) (b) oo = 0.025 (GUE) (c) oo = 0.030 (GOE)

- Intermediate value of deviation, LSD follows the Wigner-Dyson distribution from RMT

(i.e., chaotic systems)

- GUE case was reported in previous literature

[ JHEP 01 (2023) 153, JHEP 10 (2023) 231, JHEP 02 (2024) 049, ... ]



Level Spacing Distribution

(a) oo =0 (b) 00 = 2 (Poisson)

- Extreme value of deviation, LSD follows the “harmonic-oscillator like” distribution

00
O—9 00 o

Integrable Chaos Integrable

Poisson distribution

(i.e., Integrable systems!)



Spectral Form Factor

1? - ‘ I E 1’," - E 1>,
0.100+ . 0.100¢ 0.100+
0.010} ; 0.010: 0.010:
SFF 0.001| “l “' SFF 0.001} SFF 0.001:
1074} f 107} 1074
1075} ; 1075} 1075

10_6'. NS MU ST 10_6&;. A Lo i i 10_6‘;, A v R I

107 10® 10° 10" 10" 1072 10" 107 10® 10° 10" 10" 1072 10" 107 10® 10° 10" 10" 1072 10"

t t t
(a) oo = 0.018 (GSE) (b) oo = 0.025 (GUE) (c) oo = 0.030 (GOE)

- Intermediate value of deviation, SFF exhibits the linear-ramp as in RMT

10— ' ‘ ' i 1F ]
0,100 | 0.100} ] Some Integrable system can show
0.010; it 0010 the linear-ramp in SFF
SFF 0.001 I r SFF 0.001
10-4% ] 1074
10°°) 10 Toy model: E,, ~ logn
0% ~ 0%
10" 10% 10° 10" 10" 10" 10" 107 10® 10° 10" 10" 10'? 10" . .
; : Saddle-dominated scrambling
(a) oo =0 (b) oo = 2 (Poisson) [ JHEP 01 (2024) 172, JHEP 05 (2024) 137, ... ]

- Extreme value of deviation, SFF can exhibit the linear-ramp when oo = 0



Quick Summary

g0
Integrable Chaos Integrable
(Saddle-dominated scrambling) (RMT) (Poisson theory)

- “HO-like” LSD
- ramp in SFF

mimicking chaotic features
while remaining integrable



Quick Summary

g0
Integrable Chaos Integrable
(Saddle-dominated scrambling) (RMT) (Poisson theory)

- “HO-like” LSD . |
Q. Krylov Complexity can also provide

- ramp in SFF the consistent results?

mimicking chaotic features A. Yes.
while remaining integrable



(Inverted H.O)

[ JHEP 05 (2024) 137 ]

0 1x10" 2x10" 3x10'" 4x10"
:

O—9 00 ¢

Integrable Chaos Integrable

(peak) (peak) (x)




Some Remarks

- Mixed Phase - — O ® (Details in Appendix)

Integrable Chaos Integrable [ arXiv:2412.12301 ]

: LSD of the mixed phase is well described by the Wigner-Dyson and Brody Distribution.

: Dynamics of disappearance of the ramp in SFF, peak of Krylov complexity.

: . 1 . .
- Location of stretched horizon  (\;) = ; log 2 (Details in Appendix)

2
[ arXiv: 2412.12301 ]

: As noted in previous literature (GUE case), the signature of chaos (e.g., linear ramp)

emerge when the stretched horizon is near the event horizon.

0.6 /\
\
\ ~
0.5 .
\/ "
[ ] (I(I)U-l
- Prope rermion
0.2
0.1
0.0! > - q
0 1x10 2x10 3x10' 4x10
t

: All results exhibits the same qualitative behavior as in the scalar field case.

: Numerical values of normal modes are different, but the underlying statistical behavior
remain the same.



Summary



[ arXiv: 2412.12301 ]

Energy Spectrum “Statistics”

&
Krylov Complexity



[ arXiv: 2412.12301 ]

—000 0

Integrable Chaos Integrable

(Saddle-dom.) (RMT) (Poisson theory)

With Gaussian-distributed b.c.s on the stretched horizon,

Brickwall model exhibit features consistent with RMT

as well as the integrable features. (across ensembles)

- Dynamics of scalar/fermionic probe fields and normal modes thereof

- Wigner-Dyson Distribution, Linear-Ramp in SFF, Characteristic Peak in Krylov Complexity

(Complexity with no-interior)

- Saddle-dominated scrambling and Poisson theory
Quantum Chaos

- Interesting (one-parameter) gravitational toy models for Poisson Theory

g0 Saddle-Dominated Scrambling



Final Remarks

- Our analysis has adopted a phenomenological approach

: Need to better understand the Dirichlet wall b.c.s (still ad-hoc).

: Underlying conceptual origins of this phenomenon? Perspective of boundary CFT?

- Higher-dimensional analysis Energy spectrum “statistics?

. It may provide further insights. /

: Normal modes of probe scalar field in 5-dim AdS (spherical symmetric metric) [ arXiv: 2409.05519

. Higher-dimensional hyperbolic black holes (Analytically solvable KG, Maxwell equations)

- ds bIaCk hOIE analySiS [ work in progress : HSJ, J. F. Pedraza, and J. M. Begines ]

[ JHAP 1 (2021) 1-22]

. Stretched horizon can be placed near the cosmological horizon. (ds holography)?

. Insights into the chaotic properties and the phenomenon of hyperfast scrambling?



Final Remarks

Brickwall, normal modes, and emerging thermality

Souvik Banerjee ', Suman Das (92, Moritz Dorband (®1, and Arnab Kundu?

- Relation with Quasi-Normal Modes?

In this paper, we demonstrate how black hole quasinormal modes can emerge from a Dirichlet brickwall
model normal modes. We consider a probe scalar field in a Bafios-Teitelboim-Zanelli geometry with a
Dirichlet brickwall and demonstrate that as the wall approaches the event horizon, the corresponding poles
in the retarded correlator become dense and yield an effective branch cut. The associated discontinuity of
the correlator carries the information of the black hole quasinormal modes. We further demonstrate that a

- Open Quantum Systems? [ PRL, 61, 1899 (1988), PRL, 123, 254101 (2019), PRX, 10, 021019 (2020), ... ]

: For the non-Hermitian Hamiltonian, the energy eigenvalues are complex number.

: We have different conjectures of the quantum chaos in OQS.

(Ginibre random matrix ensemble, Dissipative SFF, Complex spacing ratio, ...)

: How Brickwall model can be extended and modified to capture these if any.

(complex normal modes?)
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